S, N Co-Doped Graphene Quantum Dot/TiO2 Composites for Efficient Photocatalytic Hydrogen Generation

نویسندگان

  • He Xie
  • Chengyi Hou
  • Hongzhi Wang
  • Qinghong Zhang
  • Yaogang Li
چکیده

S, N co-doped graphene quantum dots (S,N-GQDs) coupled with P25 (TiO2) (S,N-GQD/P25) have been prepared via simply hydrothermal method. The as-prepared S,N-GQD/P25 composites exhibited excellent photocatalytic hydrogen generation activities, with a significantly extended light absorption range and superior durability without loading any noble metal cocatalyst. The photocatalytic activity of this composite under visible light (λ = 400-800 nm) was greatly improved compared with that of pure P25. This remarkable improvement in photocatalytic activity of the S,N-GQD/P25 composites can be attributed to that S,N-GQDs play a key role to enhance visible light absorption and facilitate the separation and transfer of photogenerated electrons and holes. Generally, this work could provide new insights into the facile fabrication of photocatalytic composites as high performance photocatalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuu...

متن کامل

Synergy of metal and nonmetal dopants for visible-light photocatalysis: a case-study of Sn and N co-doped TiO2.

This paper mainly focuses on the synergistic effect of Sn and N dopants to enhance the photocatalytic performance of anatase TiO2 under visible light or simulated solar light irradiation. The Sn and N co-doped TiO2 (SNT-x) photocatalysts were successfully prepared by the facile sol-gel method and the post-nitridation route in the temperature range of 400-550 °C. All the as-prepared samples were...

متن کامل

Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite

TiO2/graphene (TiO2-x/GR) composites, which are Ti(3+) self-doped TiO2 nanorods decorated on boron doped graphene sheets, were synthesized via a simple one-step hydrothermal method using low-cost NaBH4 as both a reducing agent and a boron dopant on graphene. The resulting TiO2 nanorods were about 200 nm in length with exposed (100) and (010) facets. The samples were characterized by X-ray diffr...

متن کامل

Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2.

The nanostructures of TiO2 significantly affect its photocatalytic activity. In this work, various TiO2 nanostructures have been successfully synthesized, including one-dimensional (1D) TiO2 nanotube, 1D TiO2 nanowire, three-dimensional (3D) TiO2 sphere assembled by nanoparticles (TiO2 sphere-P) and 3D TiO2 sphere assembled by nanosheets (TiO2 sphere-S). The results of photodegradation activity...

متن کامل

Facile One-Step Sonochemical Synthesis and Photocatalytic Properties of Graphene/Ag3PO4 Quantum Dots Composites

In this study, a novel graphene/Ag3PO4 quantum dot (rGO/Ag3PO4 QD) composite was successfully synthesized via a facile one-step photo-ultrasonic-assisted reduction method for the first time. The composites were analyzed by various techniques. According to the obtained results, Ag3PO4 QDs with a size of 1-4 nm were uniformly dispersed on rGO nanosheets to form rGO/Ag3PO4 QD composites. The photo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017